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S U M M A R Y  
A problem of propagation of modulated high-frequency signals in a waveguide of nonconstant height and nonconstant 
wall impedance is analysed. A multiple-scale method is used, which reduces the three-dimensional problem to a two- 
dimensional problem for each mode. The modal propagation problem is analysed by the ray method, giving rise to 
phase and group velocities, and showing the possibility of focusing effects due to variation in height and wall impedance. 
Mode coupling effects are shown and mode coupling coefficients calculated. 

1. Introduction 

An interesting problem of guided waves is that of propagation of various natural and man-made 
signals in the earth-ionosphere waveguide. Some of the factors that make this problem mathe- 
matically difficult are: (a) the earth ionosphere waveguide is three-dimensional, (b) its height is 
variable, (c) the earth conductivity (or impedance) is variable, (d) many of the signals are not 
time-harmonic. In this paper we shall demonstrate an asymptotic method which yields 
physically meaningful approximate solutions to a problem characterized by the aboVe- 
mentioned properties (a)-(d). The method assumes that the waveguide is thin (compared to 
lateral dimensions). It is useful in the range in which guided mode representations are useful, 
namely: when the guides' height is of the same order as the wavelength of the carrier frequency. 
We.assume a flat (rather than a spherical) geometry, and analyse the behavior of a scalar field 
(rather than electromagnetic field vectors) in order to keep the calculations simple. However, 
this method depends only on proper scaling, which results from geometric considerations, and 
is not tailored to the equations and boundary conditions at hand. Thus it can be applied to a 
large class of guided wave propagation problem [1], [2], [3]. Actually, we assume no a priori 
knowledge of the solution except the scaling (2.4) and (3.1) and derive everything from there. 
This is an advantage of our approach over some previous work [4], [5]. The method reduces 
a propagation problem in a three dimensional domain which is "thin", but otherwise quite 
general, to a problem of propagation in an infinite two-dimensional domain for each mode. 
The two dimensional problem for the modes can be solved by ray methods. In the lowest 
approximation the modes are uncoupled. But higher approximations reveal mode coupling, 
which we show how to calculate. This is another advantage of this approach over previous 
methods [4], [5]. 

2. Formulation of the problem 

Let V(r, O, z, t) be a scalar potential function which satisfies the wave equation 

ca A 3 V -  V~=_ c 2 V ~ + - V ~ +  Voo + V= - V~=O (2.1) 
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for t > 0, in a waveguide region D, given by 

ro(O)<r< co, 0 < 0 < 2 r e ,  O<z<~h(r ,O) .  (2.2) 

The function h(r, O) is bounded, positive and "smooth enough", r o (0) is some closed curve in 
the r, 0 plane and ~ is a small parameter, expressing the fact that the guide is thin. The boundary 
and initial conditions we choose are 

V ~ + e - l X ( r , O ) V = O ,  at z = 0 ,  (2.3a) 

V = 0 ,  at z = e h ( r ,  0), (2.3b) 

v(r, 0, z, 0) = v~(~, 0, z, 0 ) :  0 ,  (Z3c) 
V(ro(O), O, z, t) = M(O, z, t)e -i~ . (2.3d) 

Conditions (2.3a, b) correspond to an earth characterized by a variable surface impedance 
e-1X(r,  O) and a perfectly conducting ionosphere characterized by a variable height eh (r, 0). 
Both X and h are assumed to be O(1). 

The assumption that the surface impedance is O(~-1) is physically motivated. Cases with 
X=O(e)  or X = O ( e  -1) may occur, and are less general and easier to handle. Other linear 
boundary conditions could be assumed as the physical problem at hand dictates. Conditions 
(2.3c, d) assume a quiescent guide at t =0, and a given modulated signal with carrier frequency 
co and slowly varying amplitude M at r = r o (0), which characterizes the source region. More 
detailed models could lead to equations that are more general than (2.1), such as equations 
with variable coefficients and containing first order derivatives [ 1], higher order equations [2], 
or systems of equation coupled by the boundary conditions [3]. They can be treated very much 
in the same way. 

Our first step is to scale the z variable as follows: 

z = e~ ; V(r, O, z, t) ~ v(r, O, ;, t; e). (2.4) 

This changes (2.1), (2.3) to 

c 2 (D v + e- 2 v;~) = O, (2.5a) 

v = O ,  at ~=h( r ,O) ,  (2.5b) 

v ~ + X v = O ,  at i f=O,  (2.5c) 
v = v ~ = 0 ,  at t = 0 ,  (2.5d) 

v(r o, 0, ~, t; e) = tt(0, ~, t)e -i'~ , (2.5e) 

where 

[ ]  ~ A - -  C 2 ~t~'' (2.6a) 

1 1 
A -- V" V - (3~ + - 0y + (3oo. (2.6b) 

We shall seek solutions to (2.5), for 

t > 0 ,  ro< r <  oo, 0<  0_< 2~,  0=< ~_< h ,  

as asymptotic expansions in the small parameter e. 

(2.7) 

3. Asymptotic solution 

We make the following basic assumptions about the form of the solution : 

v(r, 0, ~, t; ~) = w(r, 0, ~, t, ~ ; ~), 

where 

= ~-~r o, t), 

(3.1a) 

(3.1b) 

Journal of Engineering Math., Vol. 8 (1974) 141-148 



Propaga t ion  in ear th- ionosphere  waveguide  143 

With ~b = O (1) to be determined. By (3-la) we assume the solution to be a function of the phase r 
which henceforth we treat as an additional independent variable, and by (3.1b) we assume the 
phase ~ to be a tast varying (i.e., O(e-1)) function of r, 0 and t. Further we assume that there 
exists an asymptotic expansion 

w ~ w 0 ,  t ,  
n = O  

From (3.1a) we get 

v~ = w~ , v,. = w~ + - -  (ar wr , Vo = Wo + - -  (~176 w~ , 

and analogous expressions for higher derivatives. 
In terms of the new variables, (2.5a) becomes 

s -2 {C2W~-{"[c2(V~)) 2 --0 2] W~} "~- 

+ g- l [2 (e2V~a" V--~ot ~ t 

(3.2) 

~)t W Vt= Wt"}- F. ~' 

(3.3) 

Substituting (3.2)in (3.3) yields 

Lo w(O) + ~ (L ~ w(a) + L1 w(O)) +/~2 (L 0 ~1;(2) ._}_ L1 w(1) _~_ [ ]  1,7(o)) _~ 

+ ... + e " ( l o w ( " ) + L 1  w~"- 1) + [~w~"- 2)) + . . . .  0 (3.4) 

from which we get the recursive system of equations 

L o w ( , ) =  _ L l w ~ ,  - 1)_ [Zw(,-2), n = 0, 1, 2 . . . . .  (3.5) 

with w (- ~) - w  (-2) =0, and 

Lo - c 2 {0r162 + [ (V~b) 2 - c-2 ~b 2] 0r162 (3.6a) 

L 1 = 2 c  2 [ (V~b �9 V - c - 2  ~)t(~t) -t-IA~)] ~r ( 3 . 6 b )  

In (3.3), (3.6), V is the gradient operator (~,, r-XOo). The boundary and initial conditions for 
w (") become 

w ( " )=0 ,  at ~ = h ,  (3.7a) 
w~ ") + X w  ( " ) = 0 ,  at ~ = 0 ,  (3.7b) 
w (")=wl " ) = 0 ,  at t = 0 ,  (3.7c) 
w(~ ~, t)e -i~'', at r = ro(O), (3.7d) 
w(" )=0 ,  at r = r o ( O ) ,  for n > l .  (3.7e) 

Equations (3.5), (3.7) for n = 0  can be solved by separation of variables in ~ and ~. The ex- 
pression 

w (~ = ~ [A~)(r, 0, t ) e i r " ~ +B ~ ) ( r ,  O, t)e -/7"~] sin [ f l , , (h -~) ] ,  (3.8) 
m = l  

satisfies (3.5), (3.7a) and (3.7b), provided that 

7~ = - fi2 [ (Vq~)2 _ c-2 ~b2] -1 (3.9) 

and 

-tim cos f l , , h+  X sin flmh ~ 0 ~ flmh cot tim h = X h  . 

Matching (3.8)to (3.7d) and (3.7c) yields 

Vm(ro (0), 0, t) (ro (0), 0, t) = - o x ,  
E A~)(ro(O),  O, t ) s in  [ t i m ( h - r  =/2(0, ~, t), 
m 

(3.10) 

(3.11a) 

(3.11b) 
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B~)(ro(O), O, t) = O, 

0, 0) = 0, 0) = 0 .  

It will be seen later that (3.11c, d) imply 

B ~  ~ - 0 .  

B. Rul f  

(3.11c) 
(3.11d) 

(3.12) 
Eq. (3.10) is independent of t. Since X and h are given, it can be solved for any (r, 0), yielding 
a set of values 

tim(r, 0), m = 1, 2, 3 . . . .  (3.13) 

The set of '"modal eigenfunctions" appearing in (3.8) 

f~(~) = sin/~,,(h- () ,  (3.14a) 

are solutions of the Sturm Liouville system 

f - ,+f lef~  = 0 ,  with fro(h) = 0 ,  f/,(O)+Xfm(O) = 0 ,  (3.14b) 

and thus form a complete orthogonal set. Thus (3.11b) is a Fourier expansion of #(0, if, t) for 
0 <  ( <  h, and the Fourier coefficients are 

2fh - /t(0, ~, t)sin f l m ( h - ( ) d ( .  {3.15) A~)(ro(O), O, t) = @ , f , )  fl~h o 

Eq. (3.15) gives the values of the modal amplitudes A~ ) on the initial curve ro (0), in terms of the 
given function ~. 

We now return to (3.5), (3.7) for n = 1. Using (3.8) and noting that ~ is treated as an independent 
variable, we get 

Lo w( ' )=  - L ,  w(~ = Z [~F,,(r, O, t, ~, ~)+G,,(r, O, t, ~, ~)]e i'mr 
? n  

where 

Fm= --  2c2 ~m (V~b. Vy m - 2 A(O) 
- c ~btym,,) sin tim (h-- ~), 

Gm= 2ic2{[7~(Vq5 �9 VAin(~ c-2,4, A(~ re,t, + (Vqb " VT~-C-  2 qb, Tm,t + 

(3.f6c) 

(Another expression, proportional to exp (-iTm 3) has been deleted for reasons that will be 
elaborated later.) The boundary conditions are given by (3.7). It is obvious that unless Fm= 0, w ~1) 
will be proportional to ~2, i.e., O(e-2). In other words: Z ~F~ exp (iTmr is a secular term. This 
yields 

V(o.V;%-c-2c~t?m,t = 0 ,  (3.17) 

which together with (3.9) constitutes a pair of coupled first order partial differential equations 
for 7m and q~. Fortunately, we do not need to know ~,, and q5 separately. Our solution (3.8) 
depends only on the product 7,,~, thus we may define (see (3.1b)) 

7~r ~m ~ 7,,q 5 = ~bm(r, 0). (3.18) 

We can pick any 7,, that satisfies (3.17). In particular, we can choose 7m = constant # 0, which is a 
solution of (3.17). Then (3.9) becomes an equation for ~bm only : 

(VqSm)2_ c-2 2 2 (3.19) ~m,,+3m = O .  

This is the eiconal equation for the modal phase functions ~m- Because/~  and c are independent 

(3.16a) 

(3.16b) 
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of t, the solution must be of the form 

4)~(r, O, t) = %(r, O)--2mt. 

Substituting (3.20) in (3.19) yields 

(g,fm)2 = Am - 2__pmt~2 ~ N2(r ,  O) 

145 

(3.20) 

(3.21) 

where fi,, is determined by (3.10). N,, can be regarded as a "modal refractive index". It depends 
on X and h via tim. Matching (3.20) to (3.11a) yields 

Zm (ro (0), 0) = 0 ,  (3.22a) 
)~ = 2 = egO. (3.22b) 

Eq. (3.21), with the initial condition (3.22a) can be solved by characteristics or ray methods 
]-6], [7], [8]: 

rm(r, O) = Nm Jr, (s), 0(s)] ds , (3.23a) 
o 

with N,, defined by (3.21). The integral is taken over a ray that emanates from a point on the 
initial curve r o (0), and s is an arclength parameter along the path. The rays are determined 
by the ordinary differential equations [8] 

d~s N,,(r(s)) dss = VNm, (3.23b) 

where r is the radius vector of a point (r, 0). We also note, for future use, that the operator 
Vq~,," V is simply related to the directional derivative along a ray [8] : 

VqSm" V = Arm ~s" (3.24) 

We now consider q5 m and tim as known, and use (3.17)-(3.24) to rewrite (3.16a) in the form 

- 3A~ ) 2 c3A~) + _lA,~a~v,,,~m J sin fim(h-~)+ A(O)~ Lo wt l )=2ic  2 Nm T s  + e 2 ~t 

+ N~ [fi'~ (h - ~) -  tm h'] A (~ cos ft,, ( h -  O / e ~ " ,  (3.25a) 
) 

where 

dfl,, h' dh (3.25b) 
- d s  ' = 

since tm and h do not depend on t. 
We can solve (3.25) as follows. We let 

w o) = p(1) + q(1) + r(1) (3.26a) 

where p(1), q(1) and r (1) satisfy the boundary conditions (3.7a, b) and pr is a solution of the 
homogeneous problem 

Lo p(1) = 0.  (3.26b) 

Being a solution of the homogeneous problem, p ~i} must have the same form as w ~~ namely, 

p(') = ~ A~)(r, O, t)sin [ t in (h-  0 ]  e i~m . (3.27) 
m 

We can make a special choice of q(1) that will eliminate the terms in (3.25) which are propor- 
tional to cos tim(h-().  This will result in obtaining a set of uncoupled equations for the 
determination of A~ ). 

If we choose 
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q(" = ~ [P,.(r, O, t ) (h-0  ~ s i n / L ( h - 0 +  0re(r, 0, t ) (h-0" 
m 

sin fi,, (h - () + R m (r, 0, t) (h - () cos fir, (h - 0 ] e~r (3.28a) 

it is obvious that (3.7a) is satisfied. A simple calculation, using (3.10), shows that (3.7b) will be 
satisfied if 

2hPm+Qm = I (flm +X)h + ~ (Xh-1)]Rm -- FmRm , (3.28b) 

where Fm (r, 0) is the known expression in the square brackets. From (3.25), (3.26) we get 

Low (1) = Lo q(a) + Lo r ( 1 )  = _ L1 w(O). (3.29a) 

Using (3.19) it is not hard to show that 

Loq(1)  = 2 c  2 ~ ,  [2fl,,,Pm(h-~)cosfi,,,(h-C)+ 
m 

+ tim Qm cos tim (h - () + (Pro - 2 fl,, Rm)sin tim (h -- () ] e ~r . (3.29b) 

Thus, if we choose 

i 
Pm = ~ ff~/flmA~ ~ , 

Qm = ih' A~ ~ , 

(3.30a) 

(3.30b) 

Eq. (3.29a) becomes 

Lo r(1) = 2ic 2 • N m [KmA~ )] sin tim ( h - 0  eiCm , (3.31a) 

where Km is the linear operator 

0 2 ~ • 2flmhh' ( 2flmh~fl" 1 (3.31b) 
K m = ~ s s + c 2 N m O t + 2 L N m  + F m h 1 Fm / f i~J" 

The right hand side of (3.3 la) is proportional to a solution of the homogeneous problem, and is 
thus a secular term. If w C1) is to be O(1), i.e., not proportional to ~m, we must set 

2 # O ) ~ n  A( ~  0 (3.32) A(O) A(O) + ~ "'m,t--~m~m -- K m m ~ r l m , s  

where the subscripts s, t mean differentiations with respect to s, t. This is a linear equation which, 
together with the initial conditions (3.1 ld) and (3.15), determines A~ ~ uniquely. It is also seen 
that if we would have retained the second term in (3.8) all the way, we would have obtained 
(3.12). This is because B m is the solution of a linear equation like (3.32) with zero initial condi- 
tions. 

Since the coefficients of (3.32) are independent of t, an explicit solution can be obtained, 
determining w ~~ completely (see (4.6) in next section). We can now, without loss of generality, 
set rt~)=0, and then 

W(1) = p(1) + q(a) (3.33) 

with q(~) completely determined by (3.28), (3.30), and p(X) given by (3.27). The coefficients 
A(a) R (a) in (3.27) can be determined in the same way by solving (3.5) for n=  2. 

m , - - t a  

Solving (3.5) (with the conditions (3.7)) for n __> 2 follows the same procedure. The coefficients 
A~ ), B~ ) will be solutions of linear equations like (3.32), with non-homogeneous terms which 
depend on A}~"-k), B~-k). Thus it is possible (in principle) to calculate any desired number of 
terms in (3.2). 
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4. Interpretation of the results 

The zero order approximation of the problem posed in sec. 2 is 

v ~ w (~ + O (e) (4.1) 

where w (~ is given by (3.8) as a set of uncoupled modes, each with its own phase and amplitude. 
The modal phase functions ~rn are given by (3.1b), (3.18), (3.20), (3.22) and (3.23a). From (3.20) 
we get for q~rn = constant 

dr 
Vzrn "dt  - 2,. = O. (4.2) 

We define as the modal phase velocity the magnitude of dr/dt when dr is parallel to Vzrn, i.e., 
in the ray direction. Thus, from (4.2) and (3.21) the modal phase velocity is 

Cprn- Nrn - c - . (4.3) 

With fi,, determined by h and X via (3.10) and 2 determined by the carrier frequency via (3.22b), 
the local phase velocity is determined. Due to (3.23a) we can write the phase function in the 
form 

Crn = 2 Cprn t . (4.4) 

It is convenient to define a group velocity by 

Cot n Cpm = c 2 ~ Cor n = c 2 Nrn2-1 (4.5) 

In terms of (4.5), the solution of (3.32) subject to (3.15) can be found by means of the Laplace 
transform, and is given below. (Note that s = 0 on r = ro (0)). 

( E f ] A(m~ t) = A ~  ) O t - Dm(s')ds' . (4.6) 
- -  - -  ! 0 

The modal amplitudes propagate along the rays at the group velocity, while undergoing a 
change of shape due to changes in flrn and h and due to geometrical spreading. 

We see that the three-dimensional waveguide propagation problem has been reduced to a 
two-dimensional geometrical optics problem for each propagating mode, with each mode 
having its own equivalent refractive index. Coupling between the modes is detected when we 
look at the next approximation, namely 

v ~ w (~ + ew(1) + O (e2). (4.7) 

From (3.27), (3.28), (3.30) and (3.33) we see that w (~) consists of two parts : pm is a set of un- 
coupled modes which are an O (e) correction of w (~ The information on mode coupling is 
contained in q(1). We may write (3.28a) as 

qO) = ~, Trn(r, O, ~, t)e i~m , (4.8) 
m 

where Tm satisfied conditions (3.7a, b), and expand T,, in a Fourier series for 0 < ~ < h 

Tm (r, O, (, t) = Z ~ (r, O, t) sin flk (h-- () ,  (4.9a) 
k 

with 

J'~ (r, O, t) = (Tin, fk)  , 

where fm is given by (3.14a), the inner product ( 
by (4.10b). Thus q(1) becomes 

(4.9b) 

) is defined by (3.15) and is given explicitly 
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q(~ O, (, t) = Z ~, J~(r, O, t)sin fik(h--~) e/era (4.10a) 
m k 

where 

= sin flk (h-  0 [P~ (h - ~) sin tim ( h -  ~) + 

+Qm sin f lm(h-O+R m cos t i m ( h - 0 ]  ( h - O d ( .  (4.10b) 

I'm, Qm, R,, are given by  (3.30) and (3.28) respectively and are proportional to A~ ~ J~" is 
the coupling coefficient between the ruth mode in w (~ and the kth mode in w {1). 

Since tim is an increasing sequence, it is clear from (3.21) that there can be at most a finite 
number of propagating modes at any point. By solving the ray equations (3.23b) for each 
mode, we may find caustics (envelopes of ray families) and foci in the r, 0 plane. We know that 
our expansion does not hold in the vicinity of such curves or points, and a uniform expansion 
is necessary [9]. However, knowledge of the locations of such curves or points is important 
by itself, since they indicate regions of field enhancement and shadow regions for each mode. 

We should note that this method, which is related to the multiple-scale method [10], is 
rather versatile. Many generalizations and refinements are possible. It has also been used in 
studying some nonlinear problems (though with less success, due to the great difficulties that 
are inherent to such problems). Its success requires a good choice of scaling (in our case (2.4) 
and (3.1)), which is a non-trivial problem [11]. More refined results, such as expansions that 
are uniformly valid across caustics or turning points can be obtained in this way too. This would 
require a choice of a phase function different from our (3.1), but then again no a priori "Ansatz" 
is necessary. 
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